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Data Assimilation with Soil Water Content Sensors and 
Pedotransfer Functions in Soil Water Flow Modeling

Soil Physics

A large number of soil water fl ow and storage models have been developed 
for applications in hydrology, meteorology, agronomy, contaminant hy-
drology, and other fi elds. Each of these models is based on a set of sim-

plifi ed assumptions about the mechanisms, processes, and parameters of water 
retention and fl ow, and it is oft en not possible to predict whether a particular set 
of assumptions will be applicable for a specifi c site. Th erefore, errors in soil water 
modeling predictions arise that result from both conceptual uncertainty and the 
lack of detailed knowledge about model parameters.

Soil water content monitoring data can be used to decrease errors in models. 
One way to do that is to monitor soil water content for a long period of time and 
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Soil water fl ow models are based on simplifi ed assumptions about the 
mechanisms, processes, and parameters of water retention and fl ow. That 
causes errors in soil water fl ow model predictions. Data assimilation (DA) 
with the ensemble Kalman fi lter (EnKF) corrects modeling results based on 
measured state variables, information on uncertainty in measurement results 
and uncertainty in modeling results. The objectives of this work were (i) to 
evaluate pedotransfer functions (PTFs) as a source of data to generate an 
ensemble of Richards’ equation-based models for the EnKF application to 
the assimilation of soil water content data and (ii) to research how effective 
assimilation of soil moisture sensor data can be in correcting simulated soil 
water content profi les in fi eld soil. Data from a fi eld experiment were used 
in which 60 two-rod time domain refl ectometry (TDR) probes were installed 
in a loamy soil at fi ve depths to monitor the soil water content. The ensemble 
of models was developed with six PTFs for water retention and four PTFs for 
the saturated hydraulic conductivity (Ksat). Measurements at all fi ve depths 
and at one or two depths were assimilated. Accounting for the temporal 
stability of water contents substantially decreased the estimated noise in data. 
Applicability of the Richards’ equation was confi rmed by the satisfactory 
calibration results. In absence of calibration and data assimilation, 
simulations developed a strong bias caused by the overestimation of Ksat 
from PTFs. Assimilating measurements from a single depth of 15 cm or of 
35 cm provided substantial improvements at all other observation depths. 
An increase in data assimilation frequency improved model performance 
between the assimilation times. Overall, bringing together developments 
in pedotransfer functions, temporal stability of soil water patterns, and soil 
water content sensors can create a new source of data to improve modeling 
results in soil hydrology and related fi elds.

Abbreviations: DA, data assimilation; EnKF, ensemble Kalman fi lter; Ksat, saturated 
hydraulic conductivity; PDF, probability density function; PTF, pedotransfer function; 
TDR, time domain refl ectometry.
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to calibrate the model. Th is is usually a nontrivial task given the 
high nonlinearity of realistic soil water fl ow models, layering that 
may require separate parameter sets and observations within each 
layer, and the need to accumulate observations of a substantial 
number of both fl ood and dry spell events.

Using monitoring data to periodically correct modeling 
results is a diff erent way to reduce modeling errors. Th e correction 
consists in updating simulated values, that is, replacing simulated 
values of environmental variables with values that are closer to 
the measured ones. Th is operation is called DA. It has become a 
common approach in modeling atmospheric and oceanic systems 
(Lahoz et al., 2010).

Data assimilation in soil water fl ow and storage modeling 
has a substantial history. First applications were focused on 
modeling water storage in irrigated soils with soil water balance 
computed for the whole soil profi le (Aboitiz et al., 1986; Or 
and Hanks, 1992). Neutron probe measurements were used 
to correct the simulated total soil water storage in soil profi les 
(1.5-m deep in the work of Or and Hanks, 1992). Wendroth 
et al. (1999) showed that DA in soil water modeling could be 
effi  cient if the soil water model includes three layers. A large 
volume of research was devoted to assimilating remote sensing 
data on surface soil moisture to infer the profi le distribution 
of soil water contents. Originally, coupled heat transport and 
water equations were used as the model needing corrections by 
DA (Entekhabi et al., 1994; Walker et al., 2001a). Later, the soil 
water fl ow model given by Richards’ equation was used in remote 
sensing DA (Heathman et al., 2003; Das and Mohanty, 2006). 
Semiempirical soil water fl ow and storage models with a small 
number of vertical compartments were used for coarser spatial 
scales (Crow and Van Loon, 2006; Huang et al., 2008).

Th e simplest way of DA is the direct insertion of the measured 
values of state variables in place of simulated ones. Although 
this DA method has been applied from time to time (Houser 
et al., 1998; Walker et al., 2001b; Heathman et al., 2003), it has 
been recognized that DA-based correction of modeling results 
should use information on uncertainty in data and uncertainty 
in modeling results. Simulated values should be changed to the 
values very close to measured ones if the uncertainty in data is 
much less than the uncertainty in modeling results. On the 
other hand, there is no reason to substantially change simulated 
values if the uncertainty in modeling results is much less than 
the uncertainty in data. Th is concept has been formalized by 
applying the statistical technique called Kalman fi lter which 
is a proven data assimilation method for linear dynamics and 
measurement processes with Gaussian error statistics (Kalman, 
1960). Th is technique has been applied from the very beginning 
of data assimilation in soil moisture modeling (Aboitiz et al., 
1986; Or and Hanks, 1992). As the DA for nonlinear models 
became of interest, the EnKF was proposed by Evensen (1994) 
to overcome limitations of Kalman fi lter. Th e EnKF is a 
sequential DA method, which uses an ensemble of model states 
to represent the error statistics of the model estimation. Th e 
idea is to start an ensemble of (many) simulations by varying 

model parameters, initial state variables, and forcing within 
feasible ranges. Th e variation in modeling results within the 
ensemble at the time of state variable update is used to defi ne the 
uncertainty in modeling results. Vereecken et al. (2008) noted 
that the conceptual simplicity, relative ease of implementation, 
and computational effi  ciency of the EnKF make the method an 
attractive option for DA in vadose zone hydrology. Th e EnKF 
has been proven to be an effi  cient approach to correct Richards’ 
equation-based soil fl ow modeling results of soil water contents 
by assimilating surface soil moisture (Das and Mohanty, 2006).

Soil moisture DA from sources other than remote sensing 
of surface soil moisture received little attention so far. At the 
same time, soil water content or soil matric potential sensors 
have become the wide-spread source of data on water contents 
in deep soil layers (Vereecken et al., 2008). Capacitance sensors, 
for example, have been used in irrigation scheduling (Fares et 
al., 2006), estimating soil hydraulic properties (Kelleners et al., 
2005), evaluating tree water uptake (Schaff er, 1998), upscaling 
soil water contents (Guber et al., 2009) and many other 
applications. Examples of soil moisture sensors data assimilation 
are not numerous, and include the pioneer work of Wendroth et 
al. (1999) on assimilation of tensiometer data, and assimilation 
of vadose zone recharge data (Ng et al., 2009).

Selection of the ensemble of models can strongly aff ect the 
effi  ciency of data assimilation with EnKF. Crow and Van Loon 
(2006) noted that in land data assimilation, relatively little 
guidance exists concerning strategies for selecting the appropriate 
magnitude and/or type of introduced model noise. Th ey used 
the example of coarse-scale soil water model to demonstrate 
that inappropriate model error assumptions can worsen the 
performance of a model. In case of Richards’ equation-based 
soil water modeling, feasible ranges of initial soil water contents 
can be established for a specifi c case, but establishing a feasible 
ensemble of soil water fl ow parameter sets is far from trivial. It 
was recently proposed to build an ensemble of soil water fl ow 
simulations using an ensemble of PTFs (Guber et al., 2006, 
2008). Th e argument went that the accuracy of PTF outside the 
data collection region is essentially unknown, and the ensemble 
forecasts off er a way of fi ltering the predictable from the 
unpredictable through averaging–the features that are consistent 
among ensemble members are preserved, while those that are 
inconsistent are reduced in amplitude. Perhaps more important, 
the ensemble itself, as a sample from possible forecast outcomes, 
can be used to estimate the forecast uncertainty and the likely 
structure of forecast errors (Hamill et al., 2004). Pedotransfer 
functions were used to adjust the spatial distribution of soil 
texture and hydraulic properties to match simulated and 
measured soil moisture when the direct insertion of remotely 
sensed surface soil water content was used as the DA method 
(Santanello et al., 2007). However, pedotransfer functions have 
not been so far used in soil water sensor data assimilation.

Th e objectives of this work were (a) to evaluate PTFs as a 
source of data to generate an ensemble of models for the EnKF 
application to the assimilation of soil water content sensor data 
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and (b) to research how eff ective assimilation of soil moisture 
sensor data can be in correcting simulated soil water content 
profi les in fi eld soil. A fi eld experimental dataset was used in 
which the temporal stability of soil water content patterns was 
observed and used in data assimilation procedure.

MATERIALS AND METHODS
Soil Water Content Monitoring Data

Th e experimental setup and soil water content data have 
been previously described by Jacques (2000) and Pachepsky 
et al. (2005). In brief, the experimental fi eld was located at 
Bekkevoort, Belgium. It was situated at the bottom of a gentle 
slope and was covered with a meadow. Th e soil was classifi ed as 
Eutric Regosol (FAO, 1975). A trench, 1.2-m deep and 8-m long, 
was dug at the fi eld site. Th e grass cover was removed from the 
experimental area. A plastic sheet to isolate the disturbed trench 
zone covered one side of the trench. Volumetric water content 
was measured with TDR. Sixty two-rod TDR probes (25-cm 
long, 0.5-cm rod diam., 2.5-cm rod spacing) were installed along 
the 5.5 m of the trench at 12 locations each 50 cm at fi ve depths 
of 15, 35, 55, 75, and 95 cm (Fig. 1). Soil texture and organic 
matter content were measured in samples taken where the probes 
were installed. Grain-size analyses of the sand samples have been 
performed according to the European standard EN 933-1. 
Samples were prepared by eliminating carbonates and organic 
matter. For the particles larger than 50 μm, a standard sieving 
was used with mesh sizes of 100, 250, 500, and 1000 μm. For the 
particles smaller than 50 μm, a dispersing agent was added fi rst 
aft er which the solid/water mix was put in a suspension cylinder 
for determination of the fi ne particles with class boundaries of 2, 
11, and 22 μm. Th e organic matter 
content was determined using the 
rapid dichromate oxidation method 
adapted from the Walkley–Black 
procedure. Soil texture was sandy loam 
at depths of 15, 35, and 55 cm, and 
loam at depths of 75 and 95 cm. One 
measurement cycle for all TDR-
probes took approximately 35 min, 
and the time diff erence between 
two measurements for the same 
probe was 2 h. Aft er all devices 
were installed, the trench was fi lled. 
Rainfall was continuously measured 
at the site with a rainfall recorder 
(200 cm2) with a fl oated pen 
system on a paper (0.1 mm interval, 
rotation speed 1 cm h–1). Other 
meteorological parameters were 
obtained from the station 3 km 
from the site. A thin layer of gravel 
(1–2 cm) was evenly distributed 
on the study area: (i) to decrease 
the erosive eff ect of the rain impact 

on the bare soil surface, (ii) to minimize the evaporation from 
the soil surface, and (iii) to decrease the growth of weed on the 
experimental plot. Weeds were regularly removed from the site 
during the summer. Field measurements started on 11 Mar. 1998 
(Day 0) and fi nished on 31 Mar. 1999 (Day 384). A site-specifi c 
TDR calibration ( Jacques, 2000) was used.

Ensemble Kalman Filter: Theory and Application
Th e Kalman fi lter is an implementation of the Bayesian 

update method. Given a probability density function (PDF) of 
the state of the modeled system (the prior) and the probability 
distribution function of data, the Bayes theorem is used to 
obtain the PDF aft er the data has been taken into account (the 
posterior). Th e Bayesian update incorporates new data when 
they become available, and model advances in time from one 
update to another. Th e following description is based on the 
work of Mandell (2007).

Th e Kalman fi lter relies on normal distributions of data and 
modeling results. Let the model for any simulated time generate 
N state variables x1,x2,… xn.. Th e PDF p(x) of the vector of 
simulation results x = { x1,x2,… xn.} is

1
1

1( ) exp ( ) ( )
2

Tp A −⎡ ⎤= − − −⎢ ⎥⎣ ⎦
x x Q xμ μ  [1]

where μ is the vector of mean values of variables x1, x2,, xn, Q 
is the covariance matrix, A1 as well as A2, A3, and A4 in equa-
tions below, are scaling multipliers to have the integral of prob-
ability distribution function equal to one. Th e function p(x) is 
the prior probability distribution on the moment the state has 

Fig. 1. Time domain refl ectometry probe placement (dot) at the trench wall. Locations 1 through 12 
denote 12 positions along the trench where sets of fi ve sensors–one for each measurement depths were 
installed. Filled rectangles show Ap, C1, and C2 horizons top to bottom. Dashed lines show the average 
position of the horizon boundary, and white bands show the observed range of horizon boundary depths. 
Average values of clay, silt, and sand content are given for the probe installation depths. Adopted from 

(Pachepsky et al., 2005).

Electronic Filing - Received, Clerk's Office :  08/19/2014 - * * PC# 3018, Xbts A & B * * 



832 Soil Science Society of America Journal

to be updated to account for data. Th e vector of data values d 
is also assumed to be normally distributed with the mean d and 
covariance matrix R. It is assumed that the mean data vector d  
is related to state variables x via matrix H as d Hx . Th e value 
Hx is what the value of the data would be for the state x in the 
absence of data errors. Th en the probability density p(d|x) of the 
data d conditional of the system state x, is

1
2

1( | ) exp ( ) ( )
2

Tp A  
     
 

d x d Hx R d Hx  [2]

For the update purposes, one needs the probability density 
of states conditioned on data ( | )p x d  rather than the probability 
density of data conditioned on states ( | )p d x . Th e conversion of 

( | )p d x  to ( | )p dx  can be done using the Bayes theorem

3( | ) ( | ) ( )p A p px d d x x  [3]

States conditioned on data, that is, x|d, are posterior states, 
they are referred below as xp. When [1] and [2] are used to 
compute the right-hand side of [3], the expression for p(xp) is 
obtained in the form:

1
3

1( ) exp ( ) ( )
2

p p p T p p pp A −⎡ ⎤= − − −⎢ ⎥⎣ ⎦
x x Q xμ μ [ 4 ]

Th e posterior mean μp and posterior covariance Qp in Eq. 
[4] are given by the Kalman update formulas:

)= + −

= −

p

p

K(d H

Q (I KH)Q

μ μ μ  [5]

where

 T T 1K QH (HQH R)  [6]

is the Kalman update matrix. Th e Kalman update changes state 
variables taking into account (i) data available at the moment 
when predictions have been obtained, (ii) the accuracy of those 
data, and (iii) variability of state variables. One important fea-
ture of the Kalman fi lter is that the number of elements (mea-
surements) in the data vector d is usually much smaller than the 
number of state variables– elements of the vector x.

Th e EnKF  has been developed to overcome the diffi  culty 
of using the original Kalman fi lter in cases when the dependence 
of the covariance matrix Q on time is diffi  cult to fi nd. Th e 
EnKF estimates the covariance matrix as the sample covariance 
computed from the ensemble simulation results. Th e ensemble is 
composed from randomly generated equiprobable realizations of 
the studied model. Th e randomness may apply to initial conditions, 
model parameters, and boundary conditions or forcing.

Let the ensemble consists of N models and each model 
predicts n state variables. Let the predictions of the ith model 
form the vector xi that has n elements xi, i = 1,2,…n, which 
are predicted values of state variables. Th e n × N matrix 

1 2[ , ,... ]NX x x x  is the prior ensemble. Th e goal is to correct 

the predictions at each of preset update times by changing this 
matrix to the posterior ensemble 

1 2
[ , ,... ]p p p p

NX x x x . It is 
assumed that the data form the vector d that has m elements. Th e 
vector ε is the random error in data characterized by the m × m 
error covariance matrix R.

Th e  EnKF update consists of four basic steps.
1. Find the n × N covariance matrix C of ensemble 

predictions xi
2. Generate representative random data separately for each 

ensemble member: d1 = d+ ε1, d2 = d+ ε2, …, dN = d+ εN, 
where the random vector ε belongs to the n-dimensional normal 
distribution N(0,R).

3. Collect the random data in the m × N matrix D = 
[d1,d2,…dN]

4. Find the corrected predictions as:

Xp = X+K(D − Hx)   [7]

where the Kalman gain matrix K relates the variability in predic-
tions and the data accuracy and is estimated as

K = CHT(HCHT+R)−1   [8]

Th e one-dimensional case gives a general feel of how the 
ensemble Kalman fi lter works. Consider the case n = 1 and m = 
1 when there is only one model-predicted state variable and its 
value is measured. All matrices then will become scalars, and H 
will be equal to 1. Let xi = μ+ξi, ξi belongs to N(0, 2

x ), and di = 
d+εi, εi belongs to N(0, 2

d ). Th e gain K will be

2

2 2
x

x d

K



 

 [9]

and

(1 )( ) ( )p
i i ix K K d       [10]

Values of K are between 0 and 1. Th e value of p
ix  is close to

ix when K is close to zero, that is, 2 2
d x    and accuracy in data 

is much lower compared with the variability in predictions. On 
the contrary, the value of p

ix  is close to di when K is close to one, 
that is, 2 2

x d    and accuracy in data is much higher than the 
variability in predictions.

In the application of the EnKF in this work, state variables 
were water contents at fi ve depths, and therefore n was equal to 
fi ve. Th e data vector varied in its size from one (assimilation from 
only one measurement depth, m = 1) to fi ve (assimilation of 
measurements from all depths, m = 5). Since both model results 
and measurements were soil water contents, the matrix H had 
some diagonal elements hii (1 = 1,2…,5) equal to 1 and all other 
elements equal to zero. For example, only h22 = 1 and h33 = 1 
if the measurements from the second and the third depth were 
used, and only h11 = 1 and h44 = 1 if measurements from the 
fi rst and fourth depth were used. Computation of data errors and 
model errors is discussed below.
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Soil Water Flow Model
Th e one-dimensional vertical soil water fl ow at the Bekkevoort 

experimental site was simulated with the Richards’ equation

( ) 1hK
t z z

              
 [11]

where θ is the soil water content [L3 L–3]; h is the matric po-
tential [L]; K is the hydraulic conductivity [L T–1]; z is the 
vertical axis directed upward [L]; t is the time [T]. Soil water 
retention was described using the van Genuchten equation (van 
Genuchten, 1980):

 
1

1 | |
r

mn
s r h

  


       
 [12]

where θs, θr are saturated and residual soil water content [L3 L–3]; 
α [L–1], n, m are van Genuchten water retention parameters. Th e 
hydraulic conductivity was computed from the van Genuchten–
Mualem equation (van Genuchten, 1980):

2
1/

sat 1 1

ml m

r r

s r s r

K K
                                  

 [13]

where Ksat is saturated hydraulic conductivity [L T–1], l is an em-
pirical shape-defi ning parameter. Th e value of the parameter m 
was set to 1–1/n.

Equation [11] was solved numerically using the HYDRUS 
1D soft ware (Šimůnek et al., 2008). Th e atmospheric boundary 
with daily rainfall and evapotranspiration was set as the top 
boundary condition, and the free drainage boundary condition 
was set as the bottom boundary condition. Th e pressure head 
profi le calculated from measured soil water content based on 
the van Genuchten equation was set as the initial condition. 
Predicted and updated state variables were water contents at 
fi ve measurement depths averaged across the 12 observation 
locations at the beginning of the day of update.

Pedotransfer Functions to Develop the Ensemble 
of Models

Pedotransfer functions developed from large databases were 
used to generate parameters in the van Genuchten–Mualem 
parameterization of soil hydraulic properties in variably saturated 
soils (Eq. [12] and [13]). Parameters of the water retention 
function (Eq. [12]) were found from the six pedotransfer 
functions (Appendix) developed from the European continental 
database HYPRES (Wösten et al., 1999), subsets of the U.S. 
nationwide database (Gupta and Larson, 1979; Rawls et al., 
1983), the nationwide Brazilian dataset (Tomasella and Hodnett, 
1998), and the large national Hungarian database in which sandy 
loam and loam soils were well represented (Rajkai and Varallyay, 
1992). Th e pedotransfer equations of water retention parameters 
are described in details in the Appendix.

Four sets of Ksat values were used to create ensembles of 
models in this study (Appendix). Th e ensemble of 24 models 
(6 PTFs of water retention × 4 Ksat PTFs) was applied in soil 
moisture data assimilation with EnKF.

Temporal Stability of Water Contents and Data 
Error Estimates

Th e random error in data has to be characterized to apply 
the Kalman update method. In this work, the data are the 
average values of water contents across the trench at each of 
fi ve observation depths. Th e observed time series of soil water 
contents were previously analyzed in the work of Pachepsky et al. 
(2005). Substantial temporal stability was found that manifested 
itself in the similarity of soil water content time series shapes in 
diff erent locations at the same depth, and shift s of the time series 
graphs relative to each other along the water content axis (Fig. 
2). Because the time series at the same depths were correlated, 
the “naive” computation of the covariance matrix of data errors 
D under the assumption of independence of data in diff erent 
locations at the same depth could result in large inaccuracies 
(Wigley et al., 1984) since correlated observations result in 
infl ated type 1 errors (Quinn and Keough, 2002). Th erefore, the 
statistical model of the data was assumed in the form ( Jacques et 
al., 2001):

, , ,( ) ( )i j i i j i jt t b       [14]

where i is the subscript to denote depth, i = 15, 35, 55, 75, 95 
cm, j is the subscript to denote location across the trench, j = 
1,2,…,12, μi is the average water content at the depth “i”, bi,j is 
the bias of the measurement in location j at the depth “i” relative 
to the average water content at this depth, and ηij is the random 
component that is used to defi ne the covariance matrix. Th e bias 
values were derived by fi tting Eq. [14] to the whole observed time 
series (Table 1). Inspection of the Table 1 shows that the spatial 
distribution of the bias values is not random; zones of negative 
and positive bias can be delineated in soil 2D cross-section along 
the studied transect.

Study Design
Four groups of questions have been addressed in series of 

computations.
1. Are PTF-based models applicable at the site as is, without 

any calibration or data assimilation?
2. Can Richards’ equation be calibrated to mimic the water 

fl ow at the site? Is the Richards’ equation applicable?
3. Can DA with measurements at one or two depths result 

in a satisfactory reproduction of water content time series at 
other depths? Which depths are more effi  cient for soil water 
content DA? How does the DA time interval aff ect the overall 
accuracy of simulations?

4. Does DA improve results of simulations with 
calibrated models?
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To address these questions the ensemble of 24 models 
was run with soil water retention and saturated hydraulic 
conductivity parameters estimated with PTFs. Th en, each of 
the water retention PTF was used, and the saturated hydraulic 
conductivity values for fi ve depths were calibrated with the 
observations over 30-d observation period from Day 70 to 99. 
Next, the ensemble of 24 models was run with both soil water 
retention and saturated hydraulic conductivity parameters 
estimated with PTFs, and DA was performed with the ensemble 
Kalman fi lter algorithm (Eq. [7] and [8]) for daily, weekly, or 

biweekly updates. And fi nally, the ensemble of six PTFs with 
calibrated saturated hydraulic conductivities was run, and the 
ensemble Kalman fi lter was applied with weekly updates1. Th e 
Shapiro–Wilk Test was used to determine if the simulated water 
contents and data errors were normally distributed at each depth 
on each assimilation date. Th e accuracy of simulations was 
characterized using the root mean squared error (RMSE) values 
computed as

 2( ) ( )

1
RMSE /

N
m s

i i
i

N


     [15]

where N is the number of simulated days, ( )m
i and ( )s

i are mea-
sured and simulated volumetric soil water contents at noon on 
the day “i”.

Calibration of Models in the Ensemble
Th e Richards’ Eq. [11] with the van Genuchten–Mualem 

hydraulic property models Eq. [12] and [13] was calibrated 
using the inverse solution option in the HYDRUS 1D soft ware 
based on the Marquardt–Levenberg algorithm (Šimůnek et al., 
2008). Th e saturated hydraulic conductivity values Ksat were 
subject to calibration separately for each of water retention 
PTFs; parameters of the water retention equation computed 
with water retention PTFs were not calibrated. Th e Ksat values 
were calibrated within depth intervals 0 to 25 cm, 25 to 45 cm, 
45 to 65 cm, 65 to 85 cm, and >85 cm.

RESULTS
Applicability of Pedotransfer Function-based Models 
at the Site without Calibration or Data Assimilation

Ensemble simulations between Day 100 (10 Apr. 1998) and 
Day 247 (4 Sept. 1998) are summarized in Fig. 3. Th e PTF-based 
models appear to be incapable to simulate water fl ow at the site. 
Much more water is lost from the soil profi le between the rainfall 
periods in simulations compared to measurements. Guber et al. 
(2009) observed a similar performance of the ensemble of PTF-
based models used without calibration at this site.

Accuracy of Calibrated Models
Calibration of the saturated hydraulic conductivity values 

led to the successful simulation of water contents at all fi ve depths 
(Fig. 4). Th e calibrated Richards’ equation was an adequate model 
to predict soil water fl ow at the site, at least for precipitation and 
evaporation encountered during the observation period. Table 
2 lists the calibrated Ksat values for each of six water retention 
PTFs. Th e calibrated Ksat varied among the six PTFs, indicating 
that the choice of the water retention PTFs aff ects the values 
of calibrated Ksat to some extent (Table 2). Comparison of 
calibrated Ksat with with PTF-based Ksat (Appendix) shows that 
all calibrated values of hydraulic conductivity were substantially 
smaller than the values predicted with pedotransfer functions.

Fig. 2. Time series of time domain refl ectometry (TDR)–(a–d) 
measured water contents at the 15-cm depth and (e) precipitation. 
Location numbers top to bottom: (a) 2, 3, 1; (b) 5, 6, 4; (c) 7, 8, 9; 

and (d) 11, 12, 10. Location numbering is shown in Fig. 1. Adopted 

from (Pachepsky et al., 2005).

1 Th e FORTRAN code is available on request from the 
corresponding author.
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Data Assimilation with the Noncalibrated Ensemble
Selected data assimilation results are shown in Fig. 5. Data 

assimilation provided an excellent update of weekly simulation 
results when the data from all depths were assimilated (Fig. 5a). 
Inspection of graphs in Fig. 5b and 5c shows that assimilation 
of measurements from the depth of 15 cm resulted in the same 
accuracy as assimilation of data from all depths and assimilation 
of measurements from the depth of 95 cm resulted in relatively 
large errors in the top of the profi le. While the update was 
satisfactory, the simulations between update times deviated from 
measurements since parameters of the model were not changed.

Th e systematic overview of errors in simulations with the 
ensemble Kalman fi lter data assimilation is presented in Table 
3. Th e largest simulation errors are found at the depths of 15 
and 35 cm, the smallest at the depths of 75 and 95 cm. Th is 
happens because the magnitudes and rates of water content 
changes are much larger at the depth of 15 cm than at the depth 
of 95 cm. Th erefore the deviations of ensemble simulations from 
measurements during the week between assimilations are much 
larger in the near-surface soil layers at depths of 15 and 35 cm.

Assimilation of the data from the depth of 35 cm resulted 
in an RMSE value which was the same or better than the one 
in the case of assimilation of the data from all depths. With the 
assimilation of data from only one depth, the accuracy at all 
depths generally decreased as the assimilation depths increased 
(Table 3). Assimilation of the data from the depth of 95 cm 
lead to the worst results in terms of the RMSE. Figure 5c shows 
that the errors stemmed from discrepancies between updates 
and measured water contents at shallow depths. Th e soil water 
dynamics observed at the depths of 75 and 95 cm did not capture 
changes occurring at smaller depths.

Interestingly, the simulation accuracy at the depth of 95 
cm between the assimilation times was better when the data 
were assimilated from the depth of 15 cm as compared with 
assimilation from the depth of 95 cm. Th is probably happened 
because the errors caused with assimilation of data from 95 
cm translated into substantial errors across the whole profi le 
including the 95-cm depth during the week between updates.

Adding a second assimilation depth generally improved 
the accuracy of simulations at all depths in most cases, but could 
decrease the accuracy of simulations if the bottom measurement 
depths (75 or 95 cm) were added to the top measurement depths 
(15 or 35 cm) (Table 3). Th e smallest RMSEs of the water 
content simulations were obtained aft er the assimilation of data 
from (a) the 15-cm depth, (b) the 35-cm depth, (c) from two 
depths of 15 and 35 cm, and (d) from two depths of 15 and 55 
cm (Table 3). However, assimilation of data from other depths 
was only marginally worse in terms of RMSE values (Table 3).

Biweekly data assimilation has led to the general increase 
of the simulation RMSE (Table 3). Similarly to the weekly 
assimilation, smaller RMSE were found when the data from 
top observation depths of 15 and 35 cm were assimilated. Th e 
diff erence in RMSE between the assimilation of data from the 
15 cm depths and the assimilation from other depths was smaller 

than in case of weekly updates. For example, assimilations 
of data from 15 cm and from 95 cm lead to the simulation 
RMSEs of 0.0369 cm3 cm–3 and 0.0401 cm3 cm–3, respectively, 
with biweekly updates, and to the simulation RMSEs of 
0.0307 cm3 cm–3 and 0.0358 cm3 cm–3, respectively, with 
weekly updates.

Results of daily data assimilation are shown in Fig. 6. Th e 
daily update prevents the development of the simulation bias 
which has been well pronounced with weekly, and even more so, 
in biweekly updates (Fig. 5). Using the data from only one depth 
corrects results throughout the profi le in case of daily updates as 
in a case of less frequent updates. However, using more than one 
sensor seems to be benefi cial, since the use of only one sensor 
from the 15-cm depth leads to the exaggeration of water content 
dynamics at larger depths (Fig. 6b), and the use of the sensor 
from the 90-cm depth does not properly correct the simulated 
dynamics at 15- and 35-cm depths. Th e RMSE values for daily 
assimilation are shown in Table 3. Th ey are substantially up to 12 
times less than in the case of weekly simulations. Th e best overall 
result has been achieved when all fi ve sensors have been used. Th e 
next best overall results have been obtained with pairs of sensors 
from 15 and 55 cm, and from 35 and 95 cm.

Data Assimilation with the Calibrated Ensemble
Results of data assimilation with calibrated models are 

summarized in Table 4. Th ey are compared with results without 
calibration in the same table. Using calibrated models in the 
ensemble in case of weekly assimilation has resulted in much 
better overall accuracy as compared with the assimilation with 
noncalibrated models as the comparison of Tables 3 and 4 shows. 
Th e daily assimilation update without calibration, however, 
resulted in better accuracy than the weekly data assimilation 
with calibrated models.

Statistical Properties of Ensemble Simulations 
and Measurements

We note that both simulated water contents and data 
errors were mostly normally distributed. More than 99% of 

Table 1. The bias values of the measurements in 12 locations at the 
fi ve depths with respect to the average water content at each depth.

Time domain 
refl ectometry

location

Bias values at the depths of

15 cm 35 cm 55 cm 75 cm 95 cm

1 –0.0191 0.0096 –0.0315 –0.0160 0.0152
2 0.0192 0.0103 –0.0039 0.0036 0.0184

3 0.0063 0.0104 –0.0146 –0.0104 0.0058

4 –0.0493 –0.0131 –0.0117 –0.0372 0.0164

5 0.0195 –0.0084 0.0069 0.0160 –0.0054

6 –0.0200 0.0101 0.0003 0.0150 0.0203

7 0.0111 –0.0430 0.0021 –0.0028 –0.0707

8 –0.0167 –0.0214 0.0071 0.0253 0.0083

9 –0.0177 –0.0165 0.0105 0.0009 0.0034

10 0.0149 0.0138 0.0085 0.0074 –0.0010

11 0.0302 0.0257 0.0029 0.0239 0.0041
12 0.0216 0.0223 0.0233 –0.0257 –0.0148
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data sets passed the normality test at the signifi cance level of 
0.01, indicating that the Kalman fi lter assumption of normal 
distributions was met for priors and for data. Th e absence 
of systematic trends in data errors was also assessed from the 
inspection of the correlation between the data errors at diff erent 

depths (Table 5). Correlation coeffi  cients between the data at 
diff erent depths varied widely among the assimilation dates.

DISCUSSION
Considerable bias has been encountered in the results water 

fl ow simulations with the ensemble of pedotransfer functions for 

Fig. 3. Comparison of measured and ensemble-simulated soil water 
contents. Neither calibration nor data assimilation has been applied.

Fig. 4. Comparison of measured and simulated soil water contents. 
Calibration of saturated hydraulic conductivity has been applied.
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Table 2. Calibrated values of the saturated hydraulic conductivity (Ksat) from simulations with six different pedotransfer functions 
for water retention.

Pedotransfer function no. Pedotranfer function source Model
Calibrated Ksat (cm d–1) at depths of

15 cm 35 cm 55 cm 75 cm 95 cm

1 Wösten et al. (1999) VG† 4.95 0.93 0.69 2.21 2.56
2 Wösten et al. (1999) VG† 4.71 0.40 0.68 2.41 1.02

3 Tomasella and Hodnett (1998) WH→VG‡ 3.89 1.55 1.22 1.05 1.35

4 Gupta and Larson (1979) WH→VG‡ 2.44 0.39 0.50 0.95 0.85

5 Rajkai and Varallyay (1992) WH→VG‡ 3.51 1.14 0.14 1.95 2.22
6 Rawls et al. (1983) WH→VG‡ 1.21 0.16 0.47 0.89 0.94
† Parameters of the van Genuchten equation are estimated with the pedotransfer function.
‡ Water contents at specifi c pressure heads are estimated, and then the van Genuchten equation is fi tted to the estimates.

Fig. 5. Selected results of weekly ensemble simulations update; (a) update with assimilation of data from sensors from all fi ve depths, (b) update 
with assimilation of data from sensors at the 15-cm depth, and (c) update with assimilation of data from the sensors at the 95-cm depth.
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our research site. Simulated water content values declined much 
faster than measurement (Fig. 1). Th e DA updates were bringing 
ensemble simulated water contents closer to measured, but the 
divergence between simulations and measurements occurred 
aft er each update. Th e reason for the divergence was the large 
diff erence between PTF-estimated and actual hydraulic 
conductivity. Th e large estimated hydraulic conductivity Ksat 
led to the fast emptying of the soil profi le in simulations. Th e 
diff erence between calibrated and PTF predicted values of Ksat 
may be related to the fact that the Ksat pedotransfer functions 
were developed with the data from small soil samples (e.g., 
Rawls et al., 1998). It has been observed that Ksat may decrease 
with increasing measurement scale (e.g., Mallants et al., 1997). 
Another reason can be that we adopted the mean values of 
Ksat measured or fi tted from a large dataset as the PTF-based 
Ksat values in this study and their standard deviations are large 
(Schaap and Leij, 1998; Carsel and Parrish, 1988). Yet another 
possible explanation can be that we observed and simulated 
mostly unsaturated fl ow, and in the van Genuchten–Mualem 
model (Eq. [13]), the eff ect of Ksat on the unsaturated hydraulic 
conductivity depends on the value of the tortuosity parameter 
l. We used the generic value of l = 0.5 in all simulations (van 
Genuchten, 1980), but this value was found to be both positive 
and negative and to vary in a wide range (Schaap and Leij, 2000). 
Values of l smaller than 0.5 increase the value of unsaturated 
hydraulic conductivity, and if the values of l in soil at the site 
were smaller than values of l in soils in experiments used to 
derive the Ksat PTF, relatively small Ksat would be suffi  cient to fi t 
the unsaturated hydraulic conductivity in the observed ranges 
of water contents. Also, calibrated Ksat should refl ect the set of 
van Genuchten water retention parameters which probably are 
diff erent of van Genuchten parameters of soils used to develop 
the Ksat PTFs. We note that Jacques et al. (2002) who calibrated 
both water retention and hydraulic conductivity parameters for 
the soil of our study have found values of Ksat between 1 cm d–1 
and 4 cm d–1 that is close to values we have obtained.

Th e observed bias in modeling results should aff ect the 
DA effi  ciency, since the data assimilation procedures, including 
EnKF, are developed assuming random errors both in data and 
in simulations; the presence of systematic errors in modeling 
results, however, is a common occurrence that data assimilation 
encounters (Dee, 2005). Such bias may arise not only from 
the parameter inaccuracy like in the case of our work. Ryu et 
al. (2009) showed that because of the nonlinearity of soil 
water models the bias can appear even if an ensemble of model 
forecasts originates from Gaussian variations. Bias in surface soil 
moisture states can lead to signifi cant mass balance errors and 
degrade the performance of the EnKF analysis in deeper soil 
layers. Overall, bias-blind data assimilation appears to result in 
biased and noisy updates (Dee, 2005). Th e data assimilation 
to correct simultaneously both parameters and state variables, 
that is, hydraulic conductivity and soil water contents, may be 
a way to develop a reliable soil water model for a specifi c site 
(e.g., Montaldo and Albertson, 2003). Systematic procedures for 
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such dual estimation in hydrologic models were introduced by 
Moradkhani et al. (2005a, 2005b) and Vrugt et al. (2005). Data 
assimilation to determine parameters of Richards’ equation was 
recently demonstrated with a synthetic dataset (Montzka et al., 
2011). Th e authors showed that, in the assimilation of surface 
water content data, the bias can be aff ected by the availability of 
information about water contents in the lower part of the profi le 
and by soil properties. Approaches designed to model bias per se 
to improve data assimilation results for state variables have also 
been proposed (e.g., Dee, 2005). Evaluating the bias removal 
methods to apply with data assimilation from soil water content 

sensors in the Richards’ equation model presents an interesting 
avenue for further research.

Th e soil water content DA with the EnKF provided good 
results across the whole soil profi le even when the data from one 
depth or from two depths were used for the assimilation (Fig. 
5 and 6 and Tables 3 and 4). Th is feature makes EnKF DA in 
soil water fl ow modeling more attractive as compared with direct 
insertion and other DA methods (Das and Mohanty, 2006). 
Th is is probably due to the fact that the assumptions of the soil 
water fl ow model have been applicable to the site conditions 
during the observation period which did not include events 

Fig. 6. Selected results of daily ensemble simulations update; (a) update with assimilation of data from sensors from all fi ve depths, (b) update with 
assimilation of data from sensors at the 15-cm depth, and (c) update with assimilation of data from the sensors at the 95-cm depth.
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conducive for preferential fl ow or long dry spells when 
Richards’ equation might not be applicable. Satisfactory 
results across the whole soil profi le were obtained from 
the assimilation of water contents at the top of the profi le. 
Th is is in line with results and conclusion of works that 
have used the EnKF to assimilate the remotely sensed 
data at the soil surface to reproduce the water contents 
in soil profi le (Das and Mohanty, 2006). If the physics is 
right then the model is able to capture the process if the 
boundary conditions are corrected. Crow and Wood 
(2003) noted that inadequacies in land surface model 
physics can create specifi c challenges in assimilation of soil 
surface water content data. However, the assimilated water 
content does not need to be measured on soil surface. 
In essence, a single soil water sensor or tensiometer can 
provide enough information to correct the performance 
of a physically-based soil hydraulic model for the whole 
soil profi le. Th e top part of the profi le was the preferable 
location of the sensors for assimilation in this work. 
However, the research site had no vegetation and soil water 
dynamics was not aff ected by shallow groundwater or by 
intensive evaporation. Should soil water dynamics be very 
diff erent from the one in this work, a site-specifi c research 
would be needed to establish preferable locations of soil 
water content sensors.

Using the information about the temporal stability 
of soil water content measurements was essential for the 
data assimilation procedure. Th e “naive” standard errors 

Table 4. Root-mean-squared errors of soil water content simulations 
with calibrated models.

Pedotransfer
function or
ensemble

Sensor 
depth

RMSE (volume %) at the depth of

15 cm 35 cm 55 cm 75 cm 95 cm

No data assimilation
PTF 1 na† 1.03 0.93 1.16 0.82 0.57

PTF 2 na 1.22 1.04 0.84 1.04 0.58

PTF 3 na 1.89 0.79 0.82 1.19 0.58

PTF 4 na 1.11 0.96 0.9 0.89 0.63

PTF 5 na 1.47 1.34 1.54 1.67 1.36

PTF 6 na 1.4 1.51 1.08 1.03 0.84

Weekly data assimilation

Ensemble All 0.74 0.8 0.7 0.64 0.37

Ensemble 15 cm 0.75 0.88 0.83 0.73 0.43

Ensemble 35 cm 0.81 0.76 0.71 0.72 0.45

Ensemble 55 cm 0.86 0.77 0.72 0.71 0.46

Ensemble 75 cm 0.77 0.86 0.82 0.7 0.43

Ensemble 95 cm 0.8 0.87 0.85 0.73 0.38

Ensemble 15,35 cm 0.69 0.87 0.83 0.79 0.49

Ensemble 15,55 cm 0.72 0.84 0.79 0.72 0.48

Ensemble 15,75 cm 0.74 0.86 0.82 0.68 0.38

Ensemble 15,95 cm 0.7 0.86 0.82 0.75 0.43

Ensemble 35,55 cm 0.9 0.75 0.71 0.72 0.47

Ensemble 35,75 cm 0.85 0.76 0.76 0.69 0.38

Ensemble 35,95 cm 0.84 0.78 0.78 0.76 0.43

Ensemble 55,75 cm 0.88 0.78 0.71 0.67 0.39

Ensemble 55,95 cm 0.86 0.81 0.72 0.68 0.35
Ensemble 75,95 cm 0.8 0.86 0.82 0.68 0.36
† na, not applicable.

Table 5. Correlation coeffi cients between water contents measured at fi ve depths after the removal of bias according the temporal 
stability model.

Time 

Correlation coeffi cient

15 cm 35 cm 55 cm 75 cm

35 cm 55 cm 75 cm 95 cm 55 cm 75 cm 95 cm 75 cm 95 cm 95 cm

days
100 0.586 0.070 0.823 0.681 0.234 0.243 0.601 –0.085 0.534 0.441

107 0.705 –0.169 0.704 0.755 0.309 0.346 0.709 –0.260 0.191 0.634

114 0.516 –0.203 –0.050 0.526 –0.415 0.378 0.151 –0.332 0.179 0.210

121 0.762 –0.135 0.732 0.608 –0.280 0.782 0.775 –0.411 0.150 0.474

128 0.836 0.069 0.549 0.622 –0.009 0.661 0.632 –0.203 –0.066 0.772

135 0.552 –0.151 0.382 0.311 –0.185 0.199 0.099 –0.585 0.251 0.009

142 0.608 –0.141 0.255 0.055 0.149 0.059 –0.025 –0.331 0.569 0.091

149 0.122 –0.069 –0.092 –0.275 0.345 –0.169 0.198 0.197 0.253 –0.120

156 0.746 0.236 0.436 0.061 –0.008 0.588 0.377 –0.376 –0.030 0.132

163 0.197 0.191 –0.116 0.093 0.416 –0.133 0.018 –0.011 –0.060 0.512

170 0.192 0.284 –0.154 0.081 –0.022 0.400 0.270 –0.239 0.188 0.506

177 0.823 0.131 0.185 0.049 0.388 0.210 0.209 –0.210 0.308 0.365

184 0.539 0.160 –0.355 –0.456 0.097 0.035 0.033 –0.196 0.542 0.516

191 0.424 –0.215 0.280 –0.132 –0.028 0.209 0.175 0.067 0.406 –0.131

198 0.261 –0.069 0.087 0.288 0.492 0.243 –0.305 0.473 –0.218 –0.068

205 0.534 0.426 0.155 –0.082 0.738 0.237 0.265 0.081 0.263 0.382

212 0.723 0.210 –0.094 –0.602 –0.053 0.031 –0.206 0.052 –0.457 0.516

219 0.650 0.223 0.500 0.059 –0.150 0.591 –0.040 0.253 –0.029 0.289

226 0.666 0.096 0.591 0.046 −0.243 0.592 −0.013 0.161 −0.075 0.253

233 0.652 0.446 0.779 0.173 –0.110 0.588 –0.023 0.444 0.002 0.300

240 0.506 0.435 0.419 0.110 0.762 0.667 –0.247 0.631 0.105 0.173
247 –0.076 0.109 –0.011 0.288 0.540 0.605 0.616 0.405 0.508 0.637
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of soil water contents at the fi ve observation depths (15, 35, 
55, 75, and 95 cm) were in the ranges 0.022 to 0.030, 0.017 
to 0.023, 0.013 to 0.019, 0.019 to 0.023, and 0.020 to 0.028, 
respectively. Th e standard errors of the noise values in Eq. [2] 
for the same depths in the same order ranged from 0.004 to 
0.011, 0.003 to 0.012, 0.003 to 0.009, 0.004 to 0.012, and 
0.003 to 0.007. On average the standard errors of noise were 
about 30% of the naive standard errors. Th ese results are similar 
to results of Starr (2005) who worked at the coarser scale and 
found that the temporal stability model explained 47% of the 
observed variability in soil water content whereas an additional 
20% of the variability was attributed to random measurement 
error. Using errors of noise instead of naive errors in this work 
made the uncertainty in soil water content data about one 
order of magnitude smaller than the uncertainty in modeling 
results and caused the updated modeling results to be close to 
measurements. We realize that there was some underestimation 
of the data error in this work because the errors of the TDR 
measurement per se were not considered.

Decrease in the estimated measurement noise is achieved 
if the temporal stability model (Eq. [14]) is applicable. 
Appropriateness of this model depends on location and number 
of sensors. If sensor locations are such that the applicability 
temporal stability model is limited, the bias values may be 
inaccurate and noise values may be excessively large and updates 
will not lead to signifi cant changes in simulated water contents. 
Sensor placement may also aff ect the value of the average water 
content that is used in updates with Kalman gain matrix (Eq. 
[7] and [8]). Although there were suggestions on the selection 
of locations where soil water content sensors should be placed 
to record values of water content close to the average over the 
study area (Grayson and Western, 1998; Jacobs et al., 2004), 
there are no general recommendations on selection of such 
sensor locations. Th e additional diffi  culty is that locations for 
sensors representing average over the study area may be diff erent 
for diff erent soil depths (Guber et al., 2008). Finding the 
environmental factors that may indicate probable locations of 
representative soil moisture measurements will help to decrease 
the number of sensors and improve the eff ectiveness of the soil 
water content data assimilation.

Several arbitrary choices were made in the design of this 
work. Th ey included the decision to calibrate only saturated 
hydraulic conductivity rather than conductivity and water 
retention, limit the calibration period to 30 d, limit the number 
of water retention PTFs to six, and the number of Ksat values to 
four. We demonstrated that calibrating only saturated hydraulic 
conductivity values provides high accuracy of ensemble 
simulations. Calibrating van Genuchten water retention 
parameters could further improve accuracy of simulations with 
PTFs as it was shown for this dataset in the comprehensive 
calibration study ( Jacques et al., 2002). However, calibrating 30 
(four in Eq. [12] and two in Eq. [13] at fi ve depths) requires using 
long time series to capture both long drying and extreme wetting 
events. Th e data assimilation needs to be applied just because 

accumulation of such exhaustive dataset takes time and may not 
be feasible with available resources. Th e number of calibrated 
parameters could be decreased by decreasing the number of 
hydrologically diff erent layers, for example, setting this number 
equal to the number of soil genetic horizons as shown in Fig. 1. 
However, the diff erences in texture and organic carbon (OC) 
at diff erent depths within horizons that we encountered would 
be ignored in such case. Th e number of models in ensemble 
has not been varied although it is known that the accuracy of 
assimilation results is aff ected by the increase of ensemble size 
(Houtekamer and Mitchell, 1998). We demonstrated that the 
satisfactory data assimilation from single depths is possible with 
the 24 models in the ensemble. However, this number has to be 
researched in specifi c applications. We have also not attempted 
to apply the quickly developing techniques of model calibration 
with data assimilation (Montzka et al., 2011) which represent a 
very promising avenue for soil hydrology research.

Data assimilation methods other than EnKF can also be 
applied to assimilate soil water contents measurements in soil 
water fl ow simulations. Sabater et al. (2007) compared several 
methods of DA for a soil–vegetation–atmosphere model with 
two soil layers and concluded that the EnKF was one of the 
best to use. However, it is not known how model specifi c such 
conclusions may be. Th e need in using other than EnKF DA 
methods may be caused by model-specifi c violations of the EnKF 
assumptions. Specifi cally, EnKF requires the normality of model 
and data errors distributions (Eq. [2] and [4]). Th e distributions 
of water contents simulated with the PTF generated model 
ensemble conformed to the normality hypothesis in the majority 
of cases. However, in some cases simulated soil water contents 
were not normally distributed. Th is percentage may be diff erent 
in other soils and with other weather conditions. Th e DA 
methods, such as particle fi ltering, were proposed that do not 
require normality and the empirical distributions are generated 
from Monte Carlo simulations. Th ese methods generally require 
the number of ensemble numbers much larger than EnKF 
(Weerts and El Serafy, 2005). Since the number of available 
PTFs is relatively small (Pachepsky and Rawls, 2004), a further 
research is needed to establish a procedure of creating large 
ensembles with relatively small numbers of PTFs.

CONCLUSIONS
Overall, this work demonstrated that bringing together 

developments in pedotransfer functions, temporal stability of 
soil water patterns, and soil water content sensors can create a 
new source of data to improve modeling results in soil hydrology 
and related fi elds. We observed that pedotransfer functions 
for saturated hydraulic conductivity in combination with 
the standard Mualem–van Genuchten model of unsaturated 
hydraulic conductivity created substantial bias in simulations 
of water contents in soil profi le. Caution has to be exercised in 
using Ksat PTFs, and they may need further development to be 
used in applications at the pedon or the fi eld scale. Assimilation 
of soil water content sensor data appeared to be very eff ective 
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in correcting soil water content profi les simulated with the 
Richards’ equation based model; small number of sensors was 
suffi  cient to correct the simulated profi le. Th e effi  ciency of 
assimilation increased with the frequency of updates.

APPENDIX 
Six PTFs were used to estimate the water retention 

parameters in this study to develop the ensemble of models. 
Th e PTFs with input soil properties are listed in Table A.1. Two 
PTFs developed by Wösten et al. (1999) estimate the parameters 
of van Genuchten equation (Eq. [12]), and another four PTFs 
derive the van Genuchten parameters by fi tting Eq. [12] to 
the estimated water contents at selected capillary pressures 
(Tomasella and Hodnett, 1998; Gupta and Larson, 1979; Rajkai 
and Varallyay, 1992; Rawls et al., 1983). Th e details of the six 
pedotransfer equations are listed below. Th e PTFs were used 
with textural composition shown in Fig. 1, OC contents of 2.2, 
0.8, 0.4, 0.3, and 0.6% at depths of 15, 35, 55, 75, and 95 cm, 
respectively, and bulk density by soil horizons Ap, C1, and C2 of 
1.42, 1.54, and 1.53 g cm–3, respectively.

Wösten et al. (1999) derived class PTFs based on the all-
Europe database HYPRES and the van Genuchten parameters 
were obtained by fi tting Eq. [12] to geometric mean water 
contents for fi ve textural groups (Table 2 of Guber and Pachepsky, 
2010). Wösten et al. (1999) also derived regression equations to 
estimate the van Genuchten parameters from soil texture, OC, 
and soil bulk density (ρb) (Eq. [27], [28], [29] in Guber and 
Pachepsky, 2010; not included here because of their size).

Tomasella and Hodnett (1998) derived regression 
parameters for water content (θ) at nine values of soil matric 
potential based on the nationwide Brazilian soil database:

0.01( OC silt clay )a b c d         [A.1]

where a, b, c, and d are regression coeffi  cients listed in Table 3 of 
(Guber and Pachepsky, 2010).

Rawls et al. (1983) developed 12 regression equations to 
relate the soil water contents at 12 capillary pressures to sand, 
clay, OC contents, and bulk density using the U.S. Cooperative 
Soil Survey Database from Rawls et al. (1982):

sand clay OC ba b c d e           [A.2]

where a, b, c, d, and e are coeffi  cients of the linear regression 
equations listed in Table 5 of Guber and Pachepsky (2010).

Gupta and Larson (1979) derived predictive equations for 
the water content at 12 capillary pressures using a subset of the 
U.S. National Cooperative Survey database:

sand silt clay OC ba b c d e            [A.3]

where a, b, c, d, and e are coeffi  cients of the linear regression 
equations to predict soil water content at specifi c capillary 
pressure listed in Table 6 of Guber and Pachepsky (2010).

Rajkai and Varallyay (1992) developed a nonlinear 
regression equation for 10 matric potential levels using a 
Hungarian nationwide database:

2 2
0 1 1 2 2 3 1 2 4 1 5 2b b X b X b X X b X b X        [A.4]

where b0, b1, b2, b3, b4, b5, and X1, X2 are coeffi  cients and 
variables of the nonlinear regression equations, respectively. Th e 
coeffi  cients and variables at eight capillary pressures used in this 
study are listed in Table 7 of Guber and Pachepsky (2010).

Th e Ksat values were estimated (a) based on 
textural class and bulk density according 
to the table developed from a large U.S. 
nationwide database (Rawls et al., 1998), 
(b) as the average values of Ksat found from 
three large databases (Schaap and Leij, 
1998), (c) from clay and sand contents 
with regression equations developed from 
a large dataset of Soil Conservation Service 
(SCS) Soil Survey Information Reports 
(Carsel and Parrish, 1988), and (d) from 
fi tting the van Genuchten–Mualem 
equation to geometric mean water 
contents developed using the European 
continental database HYPRES (Wösten 
et al., 1999). Estimation results are shown 
in Table A.2.
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Table A.1. List of soil water retention pedotransfer functions (PTFs) and estimated 
parameters α and n in the van Genuchten equation.

PTF Depth Wösten et al. (1999)

Tomasella 

and Hodnett 

(1998)

Gupta and 

Larson 

(1979)

Rajkai and 

Varallyay 

(1992)

Rawls
et al. (1983)

Model VG† VG† WH→VG‡ WH→VG‡ WH→VG‡ WH→VG‡
Clay, % + + + +

Silt, % + + + + + +

Sand, % + + + + + +

Organic C, % + + + +

Bulk density, g cm–3 + + + +

α (1/m) 15 cm 0.0249 0.0436 0.1705 0.0281 0.0084 0.0532

35 cm 0.0314 0.0404 0.1118 0.0405 0.0064 0.0477

55 cm 0.0314 0.045 0.1034 0.0488 0.0061 0.0527

75 cm 0.0314 0.0394 0.0734 0.0353 0.0059 0.0394

95 cm 0.0314 0.028 0.0515 0.0192 0.0062 0.03

n 15 cm 1.1689 1.2214 1.2097 1.4158 1.1827 1.2916

15 cm 1.1804 1.2537 1.2173 1.3566 1.1672 1.3455

55 cm 1.1804 1.2593 1.2339 1.3385 1.182 1.3567

75 cm 1.1804 1.2376 1.2318 1.3188 1.1214 1.3474
95 cm 1.1804 1.2548 1.2259 1.368 1.0737 1.3539

† Parameters of the van Genuchten equation are estimated with the pedotransfer function
‡ Water contents at specifi c pressure heads are estimated, and then the van Genuchten equation is 
fi tted to the estimates.
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